If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21p^2-50p=0
a = 21; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·21·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*21}=\frac{0}{42} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*21}=\frac{100}{42} =2+8/21 $
| 7+3x=88 | | 12x=6+7-8x | | 5g(-3)=-8 | | (5k-4)/2=2 | | 3x+2x-25+x=107 | | -(3-3b)=6b+5 | | x+44=4x-43 | | 43=x4+3 | | 3/2x+5=2/3x-10 | | 3w-17=16 | | k-1=5k+3k-8 | | 8x−5= 6x+1 | | 8x+6x=-10x+42 | | 8x+12=3/4 | | 5y+1=3y+1 | | (5x+5)+(2x+8)=90 | | 4x=24+6xx=12 | | 278=-w+112 | | X^2+3x+171=0 | | 2x+5+x+10=90 | | 5(×-3)+14=3x-2 | | -7u+5(u-7)=-31 | | −11y=2/3. | | -y+5=42 | | X=60+9y | | 5.2=1.4-0.6y | | -5x-34=8(x-1) | | 3/2u−2/11=7/8. | | 2(5x+6)=-4(x-1)+7 | | 3/4x+5/6=7/12+4 | | 64=8(r+16) | | 200=56*1,067^x |